

# TEK-FLUX 1400A Electromagnetic Flow Meter

## **Modbus Manual**

**Document Number: MM-1400A** 



#### www.tek-trol.com

#### **NOTICE**

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

For technical assistance, contact Customer Support 796 Tek-Drive Crystal Lake, IL 60014 USA

Tel: +1 847 857 6076

#### © COPYRIGHT Tek-Trol LLC 2020

No part of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, manual, or otherwise, or disclosed to third parties without the express written permission. The information contained in this manual is subject to change without notice.



### **Table of Contents**

| 1 Protocol of Tek-Flux 1400A Electromagnetic Flow Meter                                                                                                                  | 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1.2 Master System Communication Components  2 Protocol Structure  2.1 Physical Structure  3 Modbus Protocol RTU Message Frame Definition  4 Modbus Protocol Command Code |   |
| Protocol Structure                                                                                                                                                       |   |
| 2.1 Physical Structure                                                                                                                                                   |   |
| 4 Modbus Protocol Command Code                                                                                                                                           |   |
|                                                                                                                                                                          | 3 |
|                                                                                                                                                                          | 3 |
| 5 Register Address for Electromagnetic Flow Meter                                                                                                                        | 4 |
| 6 Data Analysis                                                                                                                                                          |   |



#### 1 Protocol of Tek-Flux 1400A Electromagnetic Flow Meter

#### 1.1 Introduction

Protocol for Tek-Flux 1400A Electromagnetic Flow Meter is designed for industrial applications. This version is mostly used for real-time data acquisition, flow measurement, flow cumulation control, and some parameter modification.

#### 1.2 Master System Communication Components

Master System Communication require following components:

- International Standard RS-485 or RS-232 communication interface unit
- Support 1200,2400,4800,9600,19200 communication baud rate.
- Support the half-duplex communication mode.
- Communication program should allow the FIFO, and the slaver requires the FIFO is not less than 11Bytes.

#### 2 Protocol Structure

- Tek-Flux 1400A Electromagnetic Flow Meter protocol is based on the OSI reference model.
- The basic OSI reference model provides the basic structure and elements of communication systems.
- Tek-Flux 1400A Electromagnetic Flow Meter protocol with a simplified OSI reference model provides only 1,2 and 7 layers.

Table 1: Basic Open Systems Interconnection Reference Model

| Layer<br>No. | Layer Name         | Function             | Tek-Flux 1400A Protocol |
|--------------|--------------------|----------------------|-------------------------|
| 1            | Physical Layer     | Device Connection    | RS-485, RS-232          |
| 2            | Link Layer         | Data Link Connection | CP Link                 |
| 3            | Network Layer      |                      |                         |
| 4            | Transport Layer    |                      |                         |
| 5            | Session Layer      |                      |                         |
| 6            | Presentation Layer |                      |                         |
| 7            | Application Layer  |                      | CP command              |

#### 2.1 Physical Structure

- The communication interface of Tek-Flux 1400A Electromagnetic Flow Meter RS-485 adopts the way of electrical isolation in physical structure.
- The isolation voltage is 1,500 volts.
- Communication is a half-duplex data transmission interface.
- The standard communication speed is greater than 250KHz.
- The communication direction conversion time is 3.5μS.
- The electrical Standards communication interface complies with RS-485 international Standards.
- Tek-Flux 1400A type of network structure can be used Star and BUS network structure.
- Standard communication connect with shielded twisted pair medium.



#### 3 Modbus Protocol RTU Message Frame Definition

- Data communication is initiated by the master.
- First, the master transmits the RTU message frame.
- Messages start with a silent interval of at least 3.5-character times.
- The first field transmitted the device address.
- For all fields, the allowable characters transmitted are hexadecimal 0 ... 9, A... F.
- Network devices monitor the network bus continuously, during the silent intervals.
- When the first field (the address field) is received, each device is decoded to determine if it is the addressed device.
- A similar interval of at least 3.5-character times marks the message's end after the last transmitted character.
- After this interval, a new message can begin.
- The entire message frame must be transmitted as a continuous stream.
- If a silent interval of more than 1.5-character times occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message.
- Similarly, if a new message begins earlier than 3.5-character times following a previous message, the receiving device will continue the previous message.
- This will set an error, as the final CRC field's value will not be valid for the combined messages.
- The master message frame is shown in table 2.
- The slaver message frame is shown in table 3.

Table 2: Master RTU Message Frame

| Start Bit   | Device  | Function | Resister | Register | CRC      | End Symbol  |
|-------------|---------|----------|----------|----------|----------|-------------|
|             | Address | Code     | Address  | Length   | Checksum |             |
| T1-T2-T3-T4 | 8Bit    | 8Bit     | 16Bit    | 16Bit    | 16Bit    | T1-T2-T3-T4 |

Table 3: Slaver RTU message frame

| Start bit   | Device Address | Function code | Data   | CRC Checksum | End Symbol  |
|-------------|----------------|---------------|--------|--------------|-------------|
| T1-T2-T3-T4 | 8Bit           | 8Bit          | n 8Bit | 16Bit        | T1-T2-T3-T4 |

#### 4 Modbus Protocol Command Code

- Tek-Flux 1400A protocol is based on Modbus Protocol.
- Tek-Flux 1400A protocol uses a simplified Modbus protocol, which only uses 03, 04 and 06 function code.

Table 4: Modbus Protocol Command Code

| Function code | Name                   | Function                   |
|---------------|------------------------|----------------------------|
| 01            | Read Coil Status       | Reservation                |
| 02            | Read Input Status      | Reservation                |
| 03            | Read Holding Registers | Reservation                |
| 04            | Read Input Register    | Read Real-Time Information |
| 05            | Strong Set Single Coil | Reservation                |
| 06            | Preset Single Register | Reservation                |
| 07            | Read Abnormal Status   | Reservation                |



| 08         | Loopback Diagnostic Check                 | Reservation |
|------------|-------------------------------------------|-------------|
| 09         | Program (Only Used For 484)               | Reservation |
| 10         | Control Exercise (Only Used For 484)      | Reservation |
| 11         | Read Events Count                         | Reservation |
| 12         | Read Communication Events Record          | Reservation |
| 13         | Program (184/384 484 584)                 | Reservation |
| 14         | Inquire (184/384 484 584)                 | Reservation |
| 15         | Strong Multi-Coil Set                     | Reservation |
| 16         | Preset Multiple Registers                 | Reservation |
| 17         | Report Slave ID                           | Reservation |
| 18         | (884和micro 84)                            | Reservation |
| 19         | Reset Communication Link                  | Reservation |
| 20         | Read Common Parameter (584L)              | Reservation |
| 21         | Write Common Parameter (584L)             | Reservation |
| 22 to 64   | Reserved for the Expansion of Standby     | Reservation |
| 65 to 72   | Reserve for the Use of User Functionality | Reservation |
| 73 to 119  | Illegal Function                          | Reservation |
| 120 to 127 | Reservation                               | Reservation |
| 128 to 255 | Reservation                               | Reservation |

## 5 Register Address for Electromagnetic Flow Meter

For the special register of PLC configuration software

Table 5: Register Address for Electromagnetic Flow Meter

| PLC Addresses<br>(Base 1) | Protocol Addresses<br>(Base 0) | Data format    | Resister definition                                                           |
|---------------------------|--------------------------------|----------------|-------------------------------------------------------------------------------|
| 34113                     | 0x1010                         | Float Inverse  | Instantaneous flow float representation                                       |
| 34115                     | 0x1012                         | Float Inverse  | Instantaneous velocity float representation                                   |
| 34117                     | 0x1014                         | Float Inverse  | Float representation of the flow percentage (reservation for battery-powered) |
| 34119                     | 0x1016                         | Float Inverse  | Floating representation of fluid conductivity ratio                           |
| 34121                     | 0x1018                         | Long Inverse   | Integer part of the cumulative positive value                                 |
| 34123                     | 0x101A                         | Float Inverse  | Decimal part of the cumulative positive value                                 |
| 34125                     | 0x101C                         | Long Inverse   | Integer part of the cumulative negative value                                 |
| 34127                     | 0x101E                         | Float Inverse  | Decimal part of the cumulative negative value                                 |
| 34129                     | 0x1020                         | Unsigned short | Instantaneous flow unit                                                       |
| 34130                     | 0x1021                         | Unsigned short | Cumulative total units                                                        |
| 34131                     | 0x1022                         | Unsigned short | Upper limit alarm                                                             |
| 34132                     | 0x1023                         | Unsigned short | Lower limit alarm                                                             |
| 34133                     | 0x1024                         | Unsigned short | Empty pipe alarm                                                              |
| 34134                     | 0x1025                         | Unsigned short | System alarm                                                                  |



#### 6 Data Analysis

- Basic data analysis analyses the instantaneous flow and flow rate, flow percentage, fluid conductivity ratio.
- The fractional part of the positive and negative accumulation is transmitted by float format.
- The long integer of positive and negative accumulation is transmitted by an integral format.

Table 6: Instantaneous Flow Units

|         | ditalleous Flow Offics |
|---------|------------------------|
| Integer | Units                  |
| 0       | L/S                    |
| 1       | L/M                    |
| 2       | L/H                    |
| 3       | m³/S                   |
| 4       | m³/Min                 |
| 5       | m³/Hrs                 |
| 6       | UKG                    |
| 7       | USG                    |

Table 7: Cumulative Units

| Integer | Units |
|---------|-------|
| 0       | L     |
| 1       | m³    |
| 2       | UKG   |
| 3       | USG   |

Table 8 shows the alarm display of Upper and Lower limit alarm, empty pipe alarm and system alarm.

Table 8: Alarm Display

| Integer | Function |
|---------|----------|
| 0       | No Alarm |
| 1       | Alarm    |





www.tek-trol.com

#### **Tek-Trol LLC**

796 Tek Drive Crystal Lake, IL 60014, USA Sales: +1 847-857-6076

#### **Tek-Trol Solutions BV**

Florijnstraat 18, 4879 AH Etten-Leur, Netherlands Sales: +31 76-2031908

#### **Tek-Trol Middle East FZE**

SAIF Zone, Y1-067, PO BOX No. 21125, Sharjah, UAE Sales: +971-6526-8344

Support: +1 847-857-6076 Email: tektrol@tek-trol.com www.tek-trol.com

Tek-Trol is a fully owned subsidiary of TEKMATION LLC. We offer our customers a comprehensive range of products and solutions for process, power and oil & gas industries. Tek-Trol provides process measurement and control products for Flow, Level, Temperature & Pressure Measurement, Control Valves & Analyzer systems. We are present in 15 locations globally and are known for our knowledge, innovative solutions, reliable products and global presence.